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Abstract: A general, uniquely defined method for the analysis of structure and energetics in the statistical state of a molecular 
solution is proposed. The key element in the analysis is the proximity criterion, whereby solvent molecules in a given many-par­
ticle configuration of the systenVare classified on the basis of the nearest solute atom. The proximity criterion is cast analytical­
ly in the form of a property of the system. A compositional analysis is then developed in terms of joint quasi-component distri­
bution functions involving proximity indexes and other properties of the system such as coordination number, binding energy, 
etc. The solvation of a general molecular solute can then be formally described in terms of atoms, functional groups, or sub-
units. The procedure is fully illustrated by an analysis of the results of a Monte Carlo computer simulation on the dilute aque­
ous solution of formaldehyde at 25 0C. 

I. Introduction 

The motional degrees of freedom of molecules in liquids and 
solutions at laboratory temperatures mandate theoretical 
studies in this area to be problems in statistical mechanics and 
dynamics.1 The composition, both structural and energetic, 
of such systems must be defined on the statistical state of the 
system, and compositional indexes must be defined in terms 
of statistically weighted structural alternatives rather than any 
single supermolecular structure. In principle, the composition 
of a fluid follows from a knowledge of the molecular distri­
bution functions (MDF) for the system. The various atom-
atom pair correlation or radial distribution functions (RDF), 
g(R), can in principle be deduced from diffraction experiments 
as well as theoretical calculations and are thus the most im­
portant of this class of functions. The analysis of the compo­
sition of a molecular fluid thus requires an interpretation of 
the statistical distribution functions in structural and energetic 
terms. 

A general theoretical approach to this problem was mapped 
out several years ago by Ben-Nairn2 based on generalized 
molecular distribution functions and the closely related 
quasi-component distribution functions (QCDF), and involves 
developing the distribution of particles with certain well-de­
fined values of a compositional characteristic on the statistical 
state of the system. In particular, QCDF with respect to 
coordination number and binding energy have been used ex­
tensively in conjunction with Monte Carlo computer simulation 
methodology in a series of recent research studies on molecular 
liquids and solutions reported from this laboratory.3-6 Ben-
Nairn's approach has proved to be a very graphic and effective 
means of dealing with compositional problems in fluids. 

The use of QCDFs to interpret RDFs and composition in 
fluids has up to this point been focused on systems in which the 
local environment of the particles is simple and isotropic 

enough that structure can be developed in terms of relatively 
simple orientationally averaged distribution functions. Here 
the various atom-atom RDFs display a well-developed shell 
structure, and along with the calculated RDF between inter-
particle centers of mass can be used to formally and uniquely 
define a useful structural property such as coordination 
number. Furthermore, the various energetic environments 
represented in binding-energy distributions can be determined 
without serious ambiguities. 

In extending this approach to solutions of molecules with 
low symmetry and considerable structural anisotropy, orien­
tationally averaged distribution functions and related quan­
tities are not adequate to elucidate the complexity of structural 
detail in the system. This is clearly due to the fact that simple 
extension of the orientationally averaged quantities results in 
quantities which reflect a composite of contributions from the 
environments of different substructures (i.e., atoms, functional 
groups, or subunits) of the solute molecule. The solute-solvent 
atom-atom RDFs are correspondingly more complicated in 
appearance and the definitions of properties such as coordi­
nation number for use in QCDF are no longer straightforward. 
Furthermore, simply stepping back a level in the reduction of 
the distribution function, i.e., eliminating all the orientational 
averaging, leads to an analysis with too much dimensionality 
to interpret in accessible descriptive terms. 

The research studies having to contend with this point to 
date are relatively few. The approach of choice to date has been 
to discuss the structure of the local solution environment of 
different substructures of a polyatomic solute in aqueous so­
lution by means of a physically sensible but necessarily arbi­
trary partitioning of configuration space, and developing 
structural characteristics of the fluid environment within that 
region.7 While the calculations based on this approach have 
provided accurate data and useful insight on the structure of 
individual systems, we have come to question this idea of 
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partitioning configuration space as a general procedure. 
Problems arise in uniquely defining such a partitioning for the 
same functional groups in different molecules, and the con­
sequent limitations in the transferability of results. Also, when 
the local solution environments of two proximal functional 
groups on a solute encroach upon one another, there is no 
simple and systematic way to pursue the analysis. 

We have considered the analysis of solutions in the context 
of the problems outlined above with particular cognizance of 
the facts that (a) the contributions from the local environment 
of the various substructures of the system must be resolved 
without ambiguity, and (b) orientational averaging must be 
involved to some extent in order to simplify the results. The 
ensuing analysis is developed on the basis of a unique definition 
of the total solvation of a solute substructure, be it atom, 
functional group, or subunit, in terms of the "proximity cri­
terion", whereby solvent molecules in a given many-particle 
configuration of the system are classified on the basis of the 
nearest solute substructure. This classification can be formally 
cast in the form of an abstract property of the system. Analysis 
of structure can then be developed in terms of generalized 
molecular distribution functions. With this in place one can 
proceed to discuss theoretically the solvation of a solute mol­
ecule atom by atom, functional group by functional group, or 
subunit by subunit as desired, and solvent effects on structure 
and process in solution can be developed in similar, formally 
defined terms. Furthermore, the solvation state of a given type 
of functional group in different molecular environments can 
be quantitatively compared. 

We present herein the formalism for the analysis of statis­
tical state of solutions based on the proximity criterion, and 
illustrate the procedure with an analysis of the local environ­
ment of formaldehyde in infinitely dilute aqueous solution. This 
system demonstrates all essential features of the analysis in 
prototype. The background for this project is reviewed in 
section II. The basic idea and the related formalism are pre­
sented in section III. The calculations on [H2CO]aq are de­
scribed in section IV and the analysis of results based on the 
proximity criterion is given in detail. The results are discussed 
in section V followed by summary and conclusions. 

II. Background 
Generalized molecular distributions were developed by 

abstracting the procedure involved in formulating ordinary 
molecular distribution functions for positional correlations in 
a fluid, and extending the procedure to encompass other 
structural and energetic characteristics of the system.2 The 
basic idea is to select a well-defined property of the particles 
of the system, and impose a condition on that property. A 
counting function is formulated to quantitatively determine 
the number of particles for which the condition is satisfied in 
a given TV-particle configuration of the system. The average 
number of particles satisfying the condition on the property 
is obtained by configurational averaging. A definition of the 
composition of the system in terms of this property is obtained 
by determining the distribution of particles for all possible 
values of the condition in the statistical state of the system. 

The leading examples of QCDFs for homogeneous isotropic 
fluids are those for coordination number K and binding energy 
v. We briefly review the formulation of these quantities for 
homogenous systems in order to introduce certain notation and 
terminology relevant to the analysis of solutions introduced in 
the following section. Consider a system of ./V identical mole­
cules. The supermolecular geometry of a given TV-particle 
configuration of the system is fully specified by the configu­
rational coordinate X": 

X^=JX 1 , X 2 , . . . , X N ! (1) 

the product of positional and orientational coordinates R, and 
fl,-, respectively. 

Certain properties of the system such as coordination 
number and also aspects of the analysis introduced herein 
depend only on the positional coordinates of the particles R". 

R^=(R 1 , R 2 , . . . , Ryvj (2) 

For particle i in a given TV-particle configuration of the system, 
the property "coordination number", C„ is defined as 

C1(R") = Z HRij - Rc) (3) 

where h (/Jy - Rc) is a unit step function, equal to unity if the 
interparticle separation /Jy is less than the radius of the coor­
dination sphere RQ- TO be as consistent as possible with con­
ventional chemical connotations of coordination number, /Jc 
is chosen as the distance corresponding to the first minimum 
in the intermolecular center of mass g{R). The quantity C, 
thus gives the number of other molecules that fall within the 
first coordination sphere of particle / in configuration R". The 
counting function for this property 

TVC(R",K) = L 5[C(R") - K] (4) 
i = i 

where the Kronecker 5 is unity whenever the property C1(R") 
achieves condition K, and is identically zero otherwise. This 
sum counts the total number of particles whose coordination 
number is K in configuration R". The average number of such 
particles in the statistical state of the system is 

N0(K) = f ... fP(RN)Nc(R
N,K) d R " = (NC(RN,K)) 

(5) 

where the bracket notation denotes integration over the con­
figurational coordinates of the system. The quantity Nc(K) 
is a singlet generalized molecular distribution function for 
coordination number. The mole fraction of particles Xc(A") for 
which the coordination number is identically K is simply 

Xc(K) = Nc(K)/N (6) 

The quantity xc(K) can be viewed as the component of a 
vector 

Xc = |*c(0), xc( l ) , . . .} (7) 

which defines the composition of the system with respect to the 
classification according to coordination numbers. The average 
coordination number is 

K=ZKXc(K)= CRCg(R)4n;R2dR (8) 
/c=o Jo 

where g(R) is the interparticle center-of-mass RDF. The 
binding energy of particle i in configuration X" is defined 
as 

Bi(\N) = E(X1 X1--,, X1, X 1 + 1 , . . ., X jV) 
-E(X X,-,, X,+ , , . . . , XN) (9) 

where E is the configurational energy of the system. The 
counting function for binding energy is 

/VB(X", I;) = dv L 6[B1(X") - A (10) 
i ' = i 

which is the number of particles having a binding energy be­
tween v and v + dv for the specified configuration R"; note 
that 5 here is a Dirac <5 function. The average number of par­
ticles having a binding energy between v and d^ is 

Nz(v)dv = dv (TV8(X", V)) (11) 

where the configurational coordinates X,- of each particle / are and the corresponding mole fraction is 
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xB(v) dv = NB(v) dv/N (12) 

The quantity x$(v) can be viewed as the component of a 
compositional vector 

XB = I-XB(")I, ^ =-oo,+00 (13) 

which defines the composition of the system with respect to 
binding energy. The average binding energy is given by 

v = J*J uxB(v) dv = (E(XN))/N (14) 

such that the thermodynamic configurational internal energy 
is related to binding energy by the expression 

U=1I2Nv (15) 

One may proceed along analogous lines to define other 
GMDFs; a characteristic <p related to partial molar volume is 
also developed in ref 1. More detailed analyses of the statistical 
state can be obtained by developing GMDF for combined 
properties such as coordination number and binding energy 
together, giving 

XB,C(V,K)=NB,C(",K)/N (16) 

such that the distribution of binding energy as function of 
coordination number may be examined. Numerical examples 
of all the GMDF formally defined in this section have been 
determined for model liquids,2 water,3 the dilute aqueous so­
lution of methane,4 and dilute aqueous solutions of monatomic 
cations and anions.56 

III. Theory 

The basis for a general compositional analysis of the sta­
tistical state of molecular fluids must, as stressed in section I, 
be a unique definition of the local solution environment of each 
identifiable substructure—atom, functional group, or sub-
unit—of the solute. To accomplish this we propose the "prox­
imity criterion", which uniquely identifies each solvent mol­
ecule with a well-defined solute entity in each configuration. 
In this section we show how the proximity criterion, formally 
defined, leads directly and systematically to a general struc­
tural analysis of the system based on generalized molecular 
distribution functions. 

Consider an infinitely dilute solution consisting of one solute 
molecule with a volume V together with N solvent molecules. 
The analysis as presented can be developed in terms of the 
coordinates of the TV solvent molecules defined relative to the 
solute center of mass with no loss of generality. In any given 
configuration of the system, each of the N solvent molecules 
is classified on the basis of the nearest solute atom, A. The set 
of solvent molecules closer to A than to any other solute atom 
are henceforth referred to as the total 1 ° solvation of A. Higher 
orders of total solvation may also be defined; the set of mole­
cules for which A is the second nearest solute atom gives the 
total 2° solvation of A, and so on for 3°, 4°, etc. The first 
normalization conditions follow directly: 

•£ /VAW = N for any A (17) 
k 

and 

E NA^ = N for any k (18) 
A 

Here 7VAW is the total solvation number of A at order k. 
We now proceed to cast the proximity criterion into the 

language of GMDF and to analyze the composition of the 
various orders of total solvation of solute atoms on this basis. 
For a given solvent molecule / in an N-particle configuration 
of the system R^, let us collect as a set the solute atoms listed 
in order of k. The members of this set are the "proximity in­

dexes" for solvent molecule;', S,-W(R^). Consider this set as 
a generalized property of the system in context of GMDF 
theory: 

S1(R") = JS^10HR"). StQ">(RN).. ..} (19) 

where 

S,<'°>(R") = (A|/?A/ = min|/cM/}) (20) 

i.e., the primary proximity index of solvent molecule is the 
solute atom A such that the distance /?A, is the absolute min­
imum in the discrete set (7?M;I of all distances between the M 
solute atoms and the center of mass of the /th solvent molecule. 
Higher orders of solvation are defined, for example, as 

5,(2°)(R") = (B|i?B/=min!RMin (21) 

where the primed set \RMIY is simply the set \RMI\ with the 
distance V?A, corresponding to primary solvation deleted. 

The counting function for this property is 

Ns(R
NMk)) = £ S(SiM(R") - A) (22) 

i = i 

where the 5 function is unity when the proximity index 
SyW(R^) is (logically) equal to substructure A and is zero 
otherwise. The quantity TVs(R^1AW) is then equal to the 
number of solvent molecules associated with atom A at sol­
vation order k. We are predominantly interested in the primary 
solvation of A, but we retain the superscript (k) notation for 
complete generality. The average number of solvent molecules 
assigned to A in the statistical state of the system is 

Ns(AW)= (/Vs(R^AW)) (23) 

where TVs(A**)) may be considered a singlet GMDF for sol­
vation, S. The mole fraction of the solvent molecules in the 
system identified with A at order k is 

Xs(AW) = Ns(AW)/N (24) 

Collecting the Xs(AW) for all solute atoms A, B , . . . , leads 
to the quasi-component compositional vector 

xs<*> = |*s(A<*>),xs(B<*>),...} (25) 

the distribution of solvent molecules with respect to solute 
atoms according to the proximity criterion at order k. The mole 
fractions are defined such that 

Z *s(A(*>) = 1 for any k (26) 
A 

and 

£ Xs(AW) = I for any A (27) 

With the proximity indexes thus defined for all solvent 
molecules, one may develop an analysis of the solvation of a 
solute molecule atom by atom. The radial distribution function 
for the kth order solvation of substructure A is 

#AWW(/?) = p-2J . . . f/>(R") £ [S(L1(R") - R)] 
I 

X [5(S; W(R ,V) _ A ) ] dRN (28) 

The #AWW(/?) are related to the gAw(R) via the expres­
sion 

gAw(R) = E gAW{k)(R) (29) 

resolving a composite quantity into contributions from the 
various orders of solvation. If the analysis scheme is successful, 
these contributions individually should be much easier to in-
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terpret than the full radial distribution function. Particularly, 
we expect gAw"°'(^) m many cases to have a well-developed 
shell structure and thus permit a unique choice of Rc and a 
definition for coordination number of A. Analogously, the 
solute-water contribution to the internal energy of the system 
t/sw can be resolved into contributions developed in terms of 
the proximity criterion: 

C/sw = E H tW*> (30) 
A k 

where 

( / A w ( i ) = < W l ) ( ^ ) > (31) 

and 

£ A W ( * » ( ^ = Z ESw(XsM™MS,lk) ~ A) (32) 

assuming pairwise additivity of intermolecular interactions. 
A further structural analysis of the local solution environ­

ment of solute atoms follows in terms of the combination 
properties xc,s(^,A(*') and XBM*',A.(t)), allowing the dis­
tribution of coordination numbers and binding energies for a 
substructure to be examined. Note here the definition of the 
average quantities 

£ A < | 0 ) = E Kxc,s(K,A(|0)) = f *C gA^0)(R)4irR2 dR 

(33) 

and 

^A (n = J+J «CB.S(J\A<'">) dv = t/Aw(10) (34) 

and their relationship to radial distribution functions and mean 
energies. 

The analysis in terms of solute atoms described above can 
be readily extended to encompass compositional analyses of 
the local solution environment of functional groups in a poly-
functional molecule or of subunits, residues, or other well-
defined components of molecules and macromolecules. Let us 
define the counting function for the kth order solvation of 
functional group F as 

NS{*N.FW)= 7LNs(RN.AW) (35) 
AeF 

where Ns(RN,Al-k)) is defined in eq 22. The average number 
of solvent molecules associated with F to order (k) is 

N5(FW) = <Ns(R".F<*>)> (36) 

and the corresponding mole fraction quantity 

JCs(FW) = Na(FW)/N (37) 

The compositional analysis of the local solution environment 
of functional groups can be pursued further in terms of coor­
dination numbers and binding energies by means of the joint 
distribution functions xc,s(^,F(*>) and X B . S ^ . F ^ ' ) , defined 
analogously to the corresponding quantities in eq 33 and 34. 
The average coordination number and binding energy for the 
functional groups are simply 

KF{k) = E KA<*> (38) 
AeF 

and 

fFW = £ HpW (39) 
AeF 

Analogous considerations follow for subunit or residue analysis. 
Note that normalization considerations do not follow 

straightforwardly on these quantities since the same atom may 
appear in more than one F. 

IV. Calculations 

Calculations on the dilute aqueous solution of formaldehyde, 
[H2CO]aq, were organized to demonstrate the analysis of a 
molecular solution based on the proximity criterion as de­
scribed above. Formaldehyde is a molecular solute small 
enough to be treated fairly rigorously in computations, yet 
anisotropic enough to exhibit most of the aforementioned 
analysis problems particular to molecular solutions. The 
formaldehyde structure can be partitioned into three different 
chemically relevant fragments (the carbonyl group, C=O, the 
methylene group, CH2, and the aldehyde moiety, HCO), and 
thus provides ample opportunity to display various alternative 
ways in which the [H2CO]aq analysis may be organized. Also, 
suitable intermolecular potential functions are already avail­
able for this system.8 We note in passing the well-known ten­
dency of formaldehyde as well as certain other organic al­
dehydes and ketones to react with solvent water to form diols. 
The study of this aspect of the aqueous hydration of the car­
bonyl group would require explicit consideration of the diol-
water interaction and is not dealt with herein. Thus the form­
aldehyde solute, constrained here to be planar, should be 
considered as a means to represent the carbonyl group in 
prototype rather than a realistic treatment of the aqueous 
hydration of formaldehyde. Statistical thermodynamic (T, V, 
N) ensemble Monte Carlo calculations on [H2C0]aq were 
carried out using a modified Metropolis method on one 
formaldehyde molecule and 124 water molecules at T = 25 0C 
and a density of 1 g/cm3. The condensed phase environment 
of the system was modeled by simple cubic periodic boundary 
conditions. Convergence characteristics and error bounds on 
each of the calculated quantites were determined using control 
functions.3'4 

The configurational energy of the system was developed 
under the assumption of pairwise additivity of intermolecular 
interactions using potential functions representative of ab initio 
quantum mechanical calculations of the water-water and 
formaldehyde-water interaction energies. For the water-water 
interaction energy, we continue to use the potential function 
developed by Matsuoka, Clementi, and Yoshimine8 (MCY) 
based on moderately large configuration interaction calcula­
tions on the water dimer and used in previous studies. For the 
formaldehyde-water interaction, we have recently reported 
an analytical potential function representative of ab initio 
6-3IG molecular orbital calculations, and this is used without 
modification here.9 

The use of MCY-CI water-water potential function is 
justified on the basis of the very good agreement between 
calculated and the observed radial distribution function for 
liquid water. No such direct test on the quality of the formal­
dehyde-water potential is available. A slice of the potential-
energy hypersurface for the formaldehyde-water interaction 
based on this function is shown in Figure 1. The basic features 
expected from structural chemical considerations are all in 
place, and the calculated C = O - H hydrogen bond energy of 
—5.4 kcal/mol is reasonable. We consider this function at least 
of sufficient accuracy to adequately demonstrate the anal­
ysis. 

The remainder of this section deals with details of the 
computer simulation. All potential functions in the simulation 
were truncated at a spherical cutoff of 7.45 A. The initial 
configuration in the Monte Carlo calculation was an equili­
brated geometry taken from work in progress on [Na+]aq by 
Mezei et al.5 and replacing Na+ with H2CO. The standard 
Metropolis sampling procedure was modified to include 
preferential sampling within a radius of 6.35 A of the solute 
in the manner suggested by Owicki and Scheraga.10 
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Figure 1. Isoenergy (kcal/mol) contour map of orientationally optimized 
formaldehyde-water interaction energies calculated from the solute-
solvent intermolecular potential function used herein. The distance 
coordinates refer to the separation between the center of mass of formal­
dehyde and water. The molecular geometry corresponding to a given en­
ergy is depicted in mirror-image position in the top half of the figure. The 
relative size of the formaldehyde and water molecular structures are scaled 
down to improve legibility of the figure. 

Table I. Calculated Internal Energy and Related Quantities for 
[H2CO]311 at 25 0 C (kcal/mol) 

^Sw(AV= 124,iVs = 
IZw(ZVw= 124) 
Cw(A1W= 124) 
U& 
f/rel 
Us 

D -1089.30 ± 10.23 
-1067.35 ± 10.36 
-1072.6 ± 4.96 

-21.95 ± 2.0 
5.25 ± 11.49 

-16.7 ± 11.67 

The complete simulation involved a total of 1200K config­
urations. The initial 600K configurations were used to equil­
ibrate the system, and the ensemble average properties were 
determined over the remaining 600K. The convergence char­
acteristics of the calculation are displayed in Figure 2. The 
calculated internal energy and related quantities for [H2CO]aq 
are collected in Table I. The quantities entered here are the 
mean energy t/sw of the solution of one solute, Ns-I, and 
124 solvent molecules, ./Vw = 124; the energy Uw for 124 water 
molecules in [H20]\;Uw', the corresponding energy of solvent 
water in [H2CO]aq; Us, the calculated partial molar mternal 
energy of transfer of H2CO into water; and Us' and_t/rei, the 
solute-solvent and solvent relaxation contributions to Us- Each 
of these quantities is formally defined in eq 1-12 and Figure 
12 of ref 4. The comparison of calculated with observed values 
for the solvation energy of formaldehyde is not relevant here 
owing to the aforementioned problem with diol formation. 

V. Results 

We present in this section an analysis of the computer sim­
ulation results on [H2CO]aq at 25 0C based on the proximity 
criterion. The analysis is first presented on a solute atom by 
atom basis, then developed in terms of functional groups. Fi­
nally, the integrated results for the entire solute molecule are 
given. The results and their implications are discussed in the 
following section. 

We begin with an analysis of the local solution environment 
of the oxygen atom in H2CO. The calculated oxygen-water 
radial distribution function is given in Figure 3. (All solute-

[H 2CO] o q at 250C 

LJ125 = -1089.59 ± 9.71 kcal/mol 

- 1 1 2 . 0 

C o n f i g u r a t i o n s ( K ) x IO —*• 

Figure 2. Convergence profile for the Monte Carlo realization on 
[H2CO]aq at T = 25 0C. The solid line labeled U is the cumulative mean 
energy and the Uso are the Wood control functions taken over 5OK in­
tervals in the realization. 
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Figure 3. Calculated solute oxygen-solvent water distribution functions 
for [H2CO]3,. 

water radial distribution functions presented herein are re­
ferred to the center of mass of solvent water molecules.) The 
total gow{R) for oxygen and the corresponding running 
coordination number K(RQ) are given in Figure 3a. The 
broadness of the first main peak (2.4-5.2 A) and the lack of 
well-defined structure are a consequence of the composite 
nature of this quantity, which involves contributions from the 
solvent in the vicinity of both the carbonyl and methylene re­
gions of the solute molecule. 

Application of the proximity criterion permits the solvent 
molecules 1 ° and 2° to the oxygen atom as well as higher order 
contributions to be identified. The corresponding quantities 
gow(1°'(-R) and gow^'KR) are displayed in Figure 3 along 
with the total gov/(R)- The primary contribution is clearly 
dominant and does exhibit a considerably simpler appearance 
than the total gow(R)- The first peak in gov/(l°KR) is still 
quite broad and shows a minimum at 4.5 A, thus spanning the 
region associated with the first two hydration shells in the 
corresponding [H2O]i. This possibility is developed further 
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R ( A ) 

Figure 4. Calculated solute carbon-solvent water distribution functions 
for [H2CO]aq. 
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Figure 5. Calculated solute hydrogen-solvent water distribution functions 
for [H2CO]aq. 

below. An Rc value of 3.2 A carried over from [H20]i serves 
to resolve these two types of water in the definition of coordi­
nation number. The total area of the first peak in g o w ' ' ° ' ( ^ ) 
up to Rc corresponds to K = 2.68. The net contribution of 
gow(2°K-K) is relatively small. Note that the sum of the 1° and 
2° contributions will not account for the entire g o w ( ^ ) , in­
dicating that there are also clearly significant higher order 
contributions to gow(R)- Examination of these results shows 
the gow*3°H-R) t 0 be t n e dominant remaining contribution. 
In this and subsequent cases herein we have chosen not to 
present all the higher order results (>2°) since they are gen­
erally of limited interest in the structural chemistry of the so­
lution. 

0.6-

0.4-

0 2 -

J 0 6-

2 0.4-

*° 0 2 -

0.6-

0.4-

0 2-

H atom 

K =6.03 

C atom 

K =0 .34 

^ 
I , 

0 atom 

K = 2.68 

r-1 L_ 1 

C 

1 

b 

I 

a 

I 
2 3 4 5 

K -

Figure 6. Calculated QCDF for primary solute-solvent coordination 
number on an atom by atom basis in [H2CO]aq. 
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Figure 7. Calculated QCDF for primary solute-solvent binding energy 
on an atom by atom basis in [FhCOJaq. 

The analysis of the calculated local solution environment 
for the carbon atom is shown in Figure 4. The total gcw(R) 
and running coordination number are shown in Figure 4a. The 
resolution of gcw(-R) into contributions based on the proximity 
criterion leads to the results for g 0 " ' ^ ) and g^'KR) shown 
in Figures 4b and 4c, respectively. Here we see that the 
gcw(-R) is dominated by 2° rather than 1° contributions, a 
consequence of the limited solvent accessibility of the carbon 
atom. The corresponding results for the hydrogen atoms in 
H2CO are shown in Figure 5. Here the individual results for 
the two symmetry-equivalent hydrogen atoms have been av­
eraged together to obtain improved statistics. The 1° contri­
bution is clearly dominant, and ^ H W ( 1 ° H ^ ) exhibits a clear 
shell structure, whereas the total gnw(R) does not. 

We turn now to an atom-by-atom analysis of the 1° com­
position of the local solution environment of H2CO in terms 
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Figure 8. Calculated QCDF for primary solute-solvent coordination 
number on a functional group basis in [H2CO]aq. 
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Figure 9. Calculated QCDF for primary solute-solvent binding energy 
on a functional group basis in [H2CO]aq. 

of quasi-component distributions functions. The 1° radial 
distribution functions were used along with Rc values of 3.2, 
5.0, and 4.5 A for oxygen, carbon, and hydrogen, respectively. 
Since gcw^°Hr)iS n o t helpful for determining Rc for carbon 
the value of 5.0 was inferred from gcwC?) in [CH4]aq deter­
mined in previous work. The hydrogen Rc value was deter­
mined from the first minimum in ^HW ( 1 °H^) -

The distribution of 1 ° coordination number is shown for 
each atom in Figure 6. For the oxygen atom, Figure 6a, the 
distribution ranges from K = 1 to K = 5, with the dominant 
contribution coming from K = 2 and K = I. The average pri­
mary coordination number for oxygen is 2.68. The primary 
coordination numbers for carbon range from 0 to 2, with zero 
dominant and K = 0.34. For hydrogen, the distribution ranges 
from K = 4 to K = 8 with K = 4, 5, and 6 all important. The 
average primary coordination number for hydrogen is 6.03. 
The corresponding analysis of 1° composition in terms of 
binding energy is shown in Figure 7. The average primary 
binding energies for oxygen, carbon, and hydrogen are — 11.05, 
—0.49, and —5.34 kcal/mol, respectively. 

We turn next to the analysis of the composition of the local 
solution environment of [H2CO]aq in terms of the carbonyl, 
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Figure 10. Calculated QCDF for primary solute-solvent coordination 
number on a molecular basis in [FhCO]31,. 
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Figure 11. Calculated QCDF for primary solute-solvent binding energy 
on a molecular basis in [H2CO]aq. 

aldehyde, and methylene functional groups. This analysis is 
developed for each functional group in terms of primary 
compositional indexes of each of the contributing atoms as 
discussed at the end of section III. The results on the distri­
bution of functional group coordination numbers and func­
tional group binding energies are given in Figures 8 and 9, 
respectively. Average coordination and binding energies for 
each functional group are noted on each of the figures. 

The integrated results on the primary solvation of the entire 
formaldehyde molecule are given in Figures 10 and 11. The 
distributions of primary coordination numbers and binding 
energies are given in Figures 10 and 11, respectively. The av­
erage solvent coordination number for formaldehyde in 
[H2CO]aq is 15.06 and the average binding energy is -21.61 
kcal/mol. 

In concluding this section, we present in Figures 12 and 13 
two stereographic views of formaldehyde and first hydration 
shell extracted from significant contributions to the realization. 
Of course many thousands of configurations go into the en­
semble average, and these can only be provisionally considered 
representative. However, a large number of the configurations 
have very similar structural characteristics, and these views 
considered in perspective provide a useful alternative view of 
the system. 

Considering the contributing structures together with the 
result on gow(1°K^) in Figure 3 shows there to be two or three 
solvent waters at <3.2 A distinctly hydrogen bonded to the 
carbonyl oxygen with one of them making an especially good 
linear hydrogen bond. The v figure of — 11.05 for oxygen is also 
consistent with the existence of two or three O—H2O hydrogen 
bonds. The bent hydrogen bonds seen in Figures 12 and 13 are 
similar in appearance to those seen previously in [H20]i and 
[CH4]aq. The solvent waters in the first peak >3.2 A are pri­
marily interacting with the water molecules proximal to the 
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Figure 12. Stereographic view of a significant molecular structure con­
tributing to the statistical state of [H2CO] aq. 

carbonyl group rather than with the carbonyl group directly. 
This collectively is the justification for choosing R0 = 3.2 for 
oxygen. 

VI. Discussion 
The results presented in the previous section demonstrate 

the extent to which total solute-solvent radial distribution 
functions can be resolved into physically significant contri­
butions based on the proximity criterion. The procedure was 
successful in establishing a reasonable means for the definition 
of coordination number of solute atoms. The distributions of 
coordination-number values obtained for each of the atoms of 
H2CO in aqueous solution are reasonable in light of the relative 
electronegativity and solvent exposure of each of the atoms. 
The values of coordination number for the individual functional 
groups and for the entire molecule compounded from the 
atomic coordination numbers are generally in line with ex­
pectations of structural chemistry; however, the total first shell 
solvent coordination number of 15.06 is somewhat higher than 
is customarily assumed in solvation models. 

A preliminary look at the transferability of solvation-number 
values obtained for functional groups under the proximity 
criterion can be developed in terms of the methylene group. 
The 1 ° coordination number of the methylene functional group 
in [H2C0]aq is ** 11. Referring back to previous calculations 
from this laboratory on [CH^aq the average methane coor­
dination number was found to be 19.35, or approximately 10 
per methylene unit. Thus the 1 ° solvent coordination of CH2 
in [H2CO] aq of K = 12 is observed to be approximately the 
same as for CH2 in [CH^aq- Thus the transferability of 1° 
coordination numbers for atoms and functional groups in 
aqueous solution appears quite promising. 

In conclusion, we note in structural biochemistry an inter­
esting and powerful means of studying environmental effects 
on macromolecular structure and function in terms of the to­
pological "solvent accessibility" of the various subunits of the 
structure. It appears to us that reasonable quantitative esti­
mates of the solvation energy and solvent coordination numbers 
of a biomacromolecule could be made from a combination of 
1 ° solvation analyses of the residues of the structure used in 
conjunction with solvent accessibility data. Subsequent studies 
will be organized on this point. 

VII. Summary and Conclusions 
In the preceding sections, we introduced the idea of a 

structural analysis of the statistical state of solutions based on 

it. X ^ 

\ £ 1 yV 
v * ^ 

Figure 13. Stereographic view of another significant molecular structure 
contributing to the statistical state of [H2CO]Eq. 

the proximity criterion, developed the requisite formalism, and 
demonstrated the procedure in the analysis of a statistical 
thermodynamic Monte Carlo computer simulation on 
[H2CO]aq at T = 25 0C. The results provide a detailed inter­
pretation of the local solution environment of the formaldehyde 
molecule in water. The solute atom-water radial distribution 
functions were resolved into contributions from successive 
orders of solvation based on the proximity criterion, and the 
results for 1 ° coordination permit a meaningful definition of 
solute atom coordination number. An analysis of the local 
solution environment of the carbonyl, methylene, and aldehyde 
functional groups was developed in terms of atomic contri­
butions and analyzed based on quasi-component distribution 
functions for coordination number and binding energy. A 
preliminary consideration of the transferability of local solution 
environments for solute atoms and functional groups was de­
veloped by comparing the 1 ° solvent coordination number of 
methylene in [H2CO]aq with corresponding values for meth­
ylene in [CH4]aq. Distinct correspondence was observed for 
both the distribution function and coordination number results. 
If the results for [H2CO]aq are indicative of the method, the 
proximity criterion may well be the key to the development of 
a simply understood yet formally general structural chemistry 
of the statistical state of molecular solutions, and form the basis 
for a rigorously based descriptive chemistry of solution 
structure and processes. 
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